Section 12.1 part 1

12.1 The Yalois Yroup F a field KDF -field extension

Def Gal K - the group of F-automorphisms of K.
$G_{F} K=4 \sigma: K \underset{?}{\simeq} K \mid \sigma(c)=c$ for every $c \in F Y$
field is a oorphisus $\left.\quad \sigma\right|_{F}=$ identity
The group law (operation) is the composition of maps
Thl2.1 Gal f K is indeed a group
Th12.2 Let $k \supseteq F$ be a field extension. Let $f \in F[x]$
Let $u \in k$ be a root of $f: f(u)=0$
Let $G \in G_{F} K$.
Then $f(\sigma(u))=O_{F}$.

Clements of Gal F_{F} take roots of $f \in F[x]$ to roots of f.

Pf Let $f=c_{0}+\ldots c_{n} x^{n}$.

Then $\quad c_{0}+c_{1} u+\ldots+c_{n} u^{n}=O_{F} \quad \xi f(u)=O_{F}$

$$
\begin{array}{cc}
\sigma\left(c_{0}+c_{1} u+\ldots+c_{n} u^{n}\right)=\sigma\left(O_{F}\right) & \sigma\left(c_{i}\right)=c_{i} \text { because } c_{i} \in \bar{F} \\
c_{0}+c_{i} \sigma(u)+\ldots+c_{n} \sigma(u)^{u}=O_{F} & \sigma\left(c_{i} u^{i}\right)=\sigma\left(c_{i}\right) \sigma\left(u^{i}\right) \\
f(\sigma(u))=O_{F} & =c_{i} \sigma(u)^{i}
\end{array}
$$

Let $u \in K$ be a root of $f \in F[x]$

$$
v \in k
$$

\qquad
\qquad
\qquad
Is there $\sigma \in \operatorname{Gal}_{F} K$ such that $\sigma(u)=v$?
Th 12,3 Let k be a splitting field of a polynomial over F. Let $u, v \in K$.
There exists $\quad G \in G a A_{F} K\left\{\right.$ if and only if $\quad\left\{\begin{array}{l}u \text { and } v \\ \text { suave the same } \sigma(u)=v \\ \text { minilual polynomial }\end{array}\right.$
Pf If there exists σ, then u and v have same min poly follows from thil2,2

In Cor 1.8: $\sigma: F(u) \xrightarrow{\sim} F(v) \quad \sigma(u)=v \quad$ simple extensions

$$
F \underset{i d}{ } F
$$

Being a splitting of $f \in F[x] \subset F(u)[x]$,
K is a splitting field of f over $F(u)$ or, similarly, $F(x)$
Th II.14: (all splitting field of the same poly nominal ave isomorphic)

$$
\begin{aligned}
& \sigma(4)=v \\
& \begin{array}{cc}
F(u) \\
v i & \underset{\sigma}{\simeq} \\
u
\end{array} \\
& F \xrightarrow[i d]{ } F
\end{aligned}
$$

σ (from Th 11.14) extends identity on F.
That means

$$
\sigma \in \operatorname{Gal}_{F} K
$$

Th i 12.4 Let $k=F\left(u_{1}, \ldots, u_{n}\right)$ be an algebraic extension
Let $\sigma_{2} \tau \in \operatorname{Gal}_{F} K$
If $\sigma\left(u_{i}\right)=\tau\left(u_{i}\right)$ for $i=1, \ldots, n$
Jimages of generators determine an element of lsalois group uniquely then $\sigma=\tau$.

Pf write $F\left(u_{1}, \ldots, u_{n}\right)=F\left(u_{1}\right)\left(u_{2}\right) \ldots\left(u_{n}\right)$ as a series of simple extensions
Jor a simple extension, by Th II.7(2), we have a basis
$F(u) \quad I_{F}, u, u^{2}, \ldots, u^{n}$ - a basis for $F(u)$ over F

$$
F(u)=F[x] /(f)
$$

$$
\begin{aligned}
& V=c_{0}+c_{1} u+c_{2} u^{2}+\ldots+c_{n} u^{n} \quad c_{i} \in F \\
& \tau^{-1} \sigma(v)=v . \\
& \tau^{-1} \sigma\left(u^{2}\right)=\tau^{-1} \delta(u) \cdot \tau^{-1} \sigma(u) \\
& =u \cdot u=u^{2}
\end{aligned}
$$

Cor 12,5 aet k be a splitting field of a separable polynomial $\& \in F[x]$. Then $G_{a l_{F}} K$ is isomorphic to a subgroup of S_{n}, stere $n=\operatorname{deg} f$.

$$
K=F(\text { roots of } f)
$$

Now look at $F \subseteq E \subseteq K$
Observe Gal $K \subseteq$ Gal $_{F} K$ - a subgroup
Th l2.6 Let $K D F$ be a field extension
Let H be a subgroup of Gal $_{F} K$.
Let $E_{H}=\{k \in K \mid \sigma(k)=k$ for every $\sigma \in H\}$
Then E_{H} is an intermediate subfield
\qquad

正

Jnterverediate fields give us subgroups

Ex $\mathbb{G}(\sqrt[3]{2}) \supset \mathbb{Q}$ (nontrivial $Q(\sqrt[3]{2}) \neq \mathbb{Q})$ extension
Gal $Q(\sqrt[3]{2})=\langle C\rangle$ "iota" trivial group; contains nothing but identity
lninineal polynomial of $\sqrt[3]{2}$ is $x^{3}-2 \in \mathbb{Q}[x]$
In $Q(\sqrt[3]{2})$, we have $x^{3}-2=(x-\sqrt[3]{2}) \underbrace{\left(x^{2}+\sqrt[3]{2} x+\sqrt[3]{4}\right)}_{\text {irreducible in } Q(\sqrt[3]{2})}$

